Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172755, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670372

RESUMO

With the advancement of technology, wastewater treatment has become a significant challenge limiting the clean and sustainable development of chemical and metallurgical industries. Foam extraction, based on interfacial separation and mineral flotation, has garnered considerable attention as a wastewater treatment technology due to its unique physicochemical properties. Although considerable excellent accomplishments were reported, there still lacks a comprehensive summary of process features and contaminant removal mechanisms via foam extraction. According to the latest research progresses, the principles and characteristics of foam extraction technology, the classification and application of flotation reagents are systematically summarized in this work. Then comprehensively commented on the application fields and prospects of iterative flotation technology such as ion flotation, adsorption flotation and floating-extraction. The shortcomings and limitations of the current foam extraction technologies were discussed, and the feasible process intensification techniques were highlighted. This review aims to enchance the understanding of the foam extraction mechanism, and provides guidance for the selection appropriate reagents and foam extraction technologies in wastewater treatment.

2.
Chemosphere ; 353: 141533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403126

RESUMO

Ion precipitation flotation technology was demonstrated to be an efficient method for the separation of valuable metals from low-concentration solution. However, the selective separation of three metals from mixing solution is a great challenge, and highly selective reagents are the key to polymetallic separation. In this work, stepwise separation of Co and Zn from the simulated zinc hydrometallurgy wastewater containing ternary Co-Zn-Mn metals by ion precipitation flotation process was proposed. It's demonstrated that organic reagents of 1-nitroso-2-naphthol (NN) and sodium dimethyldithiocarbamate (SDDC) had excellent selectivity for the capture of Co and Zn to form respective precipitate from wastewaters via the chelation reactions. After precipitation, dodecylpyridinium chloride (DPC) and tetradecyltrimethylammonium bromide (TTAB) were chosen as surfactants for the separation of Co and Zn sediments from the solution via the flotation process. The effects of solution pH, molar ratio, reaction temperature, and reaction time on the selective precipitation efficiencies of Co and Zn as well as the effects of surfactant dosage and flotation gas velocity on the flotation separation efficiencies were systematically investigated. It's demonstrated that the comprehensive recovery rates of Co, Mn, and Zn reach 98%, 90%, and 99%, respectively. After separation, oxidation calcination of the foam products was conducted to prepare high-purity Co3O4 and ZnO nanoparticles in which the organic matters were burnt out with gas emissions. The stepwise chelation capture mechanisms of Co and Zn by highly selective precipitation reagents were minutely discussed. It's demonstrated that the proposed selective stepwise precipitation and flotation method is suitable for recovery of critical metal ions from low-concentration polymetallic wastewaters.


Assuntos
Águas Residuárias , Zinco , Metais , Indicadores e Reagentes , Tensoativos , Íons
3.
Ultrason Sonochem ; 102: 106758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219552

RESUMO

Clean and efficient extraction and separation of precious metals from discarded Pb-Sn alloy is critical to the sustainable utilization of solid waste resources. Dense oxide layer and compact alloy texture in the waste Pb-Sn alloy pose challenges to the effective leaching process. Ultrasonic waves are demonstrated to improve separation efficiency via the favorable physical and chemical effects in solution system. In this study, ultrasound-assisted leaching technology is attempted to rapidly and selectively extract Pb from the waste Pb-Sn alloy, and gives emphasis on ultrasonic electrochemical behaviors. The Eh-pH diagrams of Sn-H2O and Pb-H2O systems were firstly analyzed to lay the selective dissolution foundation. It's indicated that oxidizing HNO3 lixiviant is suitable to realize the selective separation of Pb. Both Sn and Pb can be dissolved to ionic Sn2+ and Pb2+ in the HNO3 solution. However, Sn2+ rapidly oxidizes to Sn4+ and Sn4+ further hydrolyzes to insoluble SnO2, which will agglomerate on unreacted materials to limit internal metal leaching in conventional leaching process. Due to the vibratory stripping of oxide layer by physical effect of ultrasound, the conventional acid leaching time for Pb extraction can be halved with the ultrasound assistance. About 99.12 % Pb and only 0.1 % Sn are dissolved in ultrasound-assisted leaching under the following optimal parameters: 0.5 mol/L HNO3, leaching temperature of 80 °C, time of 30 min, liquid-to-solid ratio of 20 mL/g, and ultrasound intensity of 0.52 W/cm2. Leaching kinetics of Pb, phase transition, microstructure evolution, Pb-Sn galvanic corrosion and dissolution polarization curve were studied to determine the ultrasonic enhanced dissolution mechanism. Notably, Pb and Sn form a microcorrosion galvanic cell in which Sn acts as a cathode and is protected while the Pb undergoes intensifying corrosion as the anode giving rise to the higher Pb dissolution efficiency. Eventually, it's suggested that Pb can be rapidly extracted and separated from the waste Pb-Sn alloy during the ultrasound-assisted HNO3 leaching process via the ultrasound physical and chemical effects, especially the sonochemistry aspect of intensified spot corrosion and galvanic corrosion. The proposed ultrasonic electrochemical corrosion in this work were applicable to the extraction of valuable metals from various waste alloys through leaching method.

4.
Ultrason Sonochem ; 100: 106631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837707

RESUMO

Clean and fast extraction of tin from the surface of tinplate scraps is of great significance for the efficient utilization of waste resources. However, the dense tin layer causes the low efficiency of conventional leaching process. To improve Sn leaching efficiency, the ultrasound technique was adopted to extract Sn from tinplate scraps by alkaline leaching in this study. In the NaOH-H2O2 leaching system, metallic tin and alloyed tin in Fe-Sn alloy located on the surface of tinplate scraps can be oxidized and transferred to soluble Na2SnO3, while the iron in Fe-Sn alloy was oxidized to oxides which were chemically inert in alkaline solution. The differences in chemical solubility of Sn and Fe, and solubleness of stannate and iron oxides gave rise to the selective separation of Sn from the tinplate scraps. The effects of the leaching parameters on the Sn leaching behaviors in conventional and ultrasound-assisted leaching processes were compared. The conventional leaching temperature and time were significantly reduced during the ultrasound-assisted leaching process. Almost all of Sn can be extracted after conventional leaching at 1 mol/L NaOH, temperature of 80 â„ƒ and time of 60 min, however the same Sn leaching effect can be achieved by ultrasound-assisted leaching at 60 â„ƒ for 30 min with ultrasound power of 60% (360 W). Sn leaching kinetics based on the plate model demonstrated the reaction rate constant of the ultrasound-assisted leaching was 70% higher than that of the conventional leaching. A novel acoustoelectric synergy effect underlying intensifying mechanism by ultrasound irradiation was proposed in this study. Eventually, this work provided a rapid and clean tin extraction method from tinplate scraps via the ultrasound-assisted alkaline leaching treatment.

5.
J Hazard Mater ; 427: 128168, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34974403

RESUMO

Environmentally hazardous P(V), Mo(VI) and W(VI) generated oxyanions exist widely in the waste liquid of nonferrous hydrometallurgy. In this work, Fe-MOF material was simply prepared via solvothermal synthesis and then used as an adsorbent to remove P(V), Mo(VI) and W(VI) oxyanions from hydrometallurgical waste liquid. Several important parameters, including solution pH, oxyanion concentration, contact time, adsorbent amount, temperature and coexistent heavy metal ions, were systematically investigated. The results demonstrate that adsorption process was almost pH-independent over a broad range of pH 3.0-10.0. The adsorption efficiency was strongly associated with the chemical species of oxyanions. The higher polymerisation degree of oxyanions was more favourable for removal efficiency. Additionally, the maximum removal efficiencies for P(V), Mo(VI) and W(VI) oxyanions under optimum conditions were approximately 100%. Furthermore, the adsorption kinetics and isotherms of oxyanions on the adsorbent separately belonged to the pseudo-second-order and Langmuir isotherm models. XPS analysis revealed that inner-sphere complexation played a dominant role in the adsorption removal process. Fe-MOFs with pH-independent properties, abundant binding sites and high stability are prospective adsorbents for treating waste liquids in the hydrometallurgical industry.


Assuntos
Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Polimerização , Estudos Prospectivos , Poluentes Químicos da Água/análise
6.
Chemosphere ; 289: 133109, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34856235

RESUMO

Dyes are intensively used in textile and dyeing industries, and substantial volumes of organic wastewater with residual dye require treatment before discharges to public waterways. Flotation separation is an efficient and widely used method for the treatment of massive organic dye wastewaters. The key scientific problems for dye flotation separation lie in the mineralization transformation of dissolved dye to tangible flocs. In this work, a high-efficiency removal of hazardous azo dye Congo red (CR) from simulated wastewaters via metal ions chelation flocculation followed by flotation separation was proposed. It's demonstrated that CR can be chelated by the trivalent metal ions, including Al(III), Fe(III), and its mixture to form hydrophobic flocs, and then the flocs were efficiently removed via flotation in a microbubble column. The effects of chelation flocculation and flotation separation conditions on the removal efficiencies of CR, COD, and chromaticity from CR simulated wastewaters were optimized. Chelation effect of CR by trivalent metal ions was in this order: Al(III)+Fe(III)>Fe(III)>Al(III). The chelation mechanism suggested that CR molecules gradually changed from hydrazones to electronegative azo with the increase of pH to 6-7, and electrostatic attraction between the Al3(OH)45+ or Fe(OH)2+ with the CR was favorable for the chelation reaction, in which the metal ions chelated with N atoms on naphthalene ring and amino groups of CR. Over 99% CR was removed under the optimal chelation and flotation conditions: chelation by composite Al(III)/Fe(III) with a concentration of 25 mg/L at pH of 7 for 25min; followed by flotation with SDS concentration of 20 mg/L and air flow rate of 50 mL/min for 20min. Under this condition, the COD and chromaticity removal efficiency were over 96% and 98%, respectively, and the turbidity was lower than 0.1 NTU, meeting the water discharge requirement. Eventually, resourceful utilization of flotation sludge via calcination was conducted to prepare Al-Fe spinel refractory material.


Assuntos
Vermelho Congo , Purificação da Água , Compostos Férricos , Floculação , Água
7.
J Hazard Mater ; 424(Pt D): 127675, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836693

RESUMO

Purification and recovery of strategic W/Mo/Re from wastewaters face a dual concern for resource recovery and environmental pollution. In this work, a novel manganese ferrite nanoparticles (MFO-NPs) was prepared from the low-grade manganese ore via pyrometallurgical transformation followed by nano sanding. The effects of pH, initial concentration, and reaction time on adsorption behaviors of simplex and mixed W/Mo/Re by MFO-NPs were investigated. Single anion adsorption indicated that molybdate and tungstate adsorption were consistent with the Langmuir isotherm model with the highest adsorption capacities of 41.985 mg/g and 85.61 mg/g, respectively; whereas rhenate was not adsorped. Selective separation indicated that W was firstly separated by MFO-NPs adsorption at pH of 5. After that, Mo was further adsorped by MFO-NPs at pH of 2-4 while Re was kept in the raffinate. The possible selective adsorption mechanism was based on the difference of electrostatic adsorption, polar adsorption, and complexing reaction between MFO-NPs and W/Mo/Re anions, which had various ionic forms under different pH values. Compared with the MFO-NPs prepared by wet chemistry methods, the novel MFO-NPs proposed in this work not only showed satisfactory adsorption capacity but had huge potential for the selective separation of W, Mo, and Re.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Dalton Trans ; 50(39): 13756-13767, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34542546

RESUMO

Materials with unique structures can exhibit different properties and are widely studied in the preparation of new materials. Herein we reported a hydrothermal method to fabricate a layered nickel silicate/reduced graphene oxide (NiSiO/RGO) nanocomposite with an interesting dandelion-like structure. The morphology, composition, and electrochemical performance of RGO, NiSiO, and NiSiO/RGO were comparatively investigated in the current work. The results showed that the NiSiO/RGO nanocomposite has a dandelion-like hollow core-shell structure and shows good electrochemical performance. Compared with NiSiO, the original discharge capacity of NiSiO/RGO increased from 1291.6 mA h g-1 to 1653.9 mA h g-1; meanwhile, the reversible specific capacity of NiSiO/RGO increased from 649.6 mA h g-1 to 691.4 mA h g-1 after testing at a current density of 100 mA g-1 for 100 cycles. Moreover, the prepared NiSiO/RGO maintained a coulombic efficiency of about 97% after the initial charging and discharging cycle. This unique hollow dandelion-like structure enhanced the electrical conductivity and further resulted in lower diffusion resistance and higher reversible capacity. This work demonstrated that the layered NiSiO/RGO with an interesting dandelion-like structure can act as an alternative anode material for lithium-ion batteries.

9.
J Hazard Mater ; 413: 125399, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33626473

RESUMO

Oily ferroalloy scraps generated from machinery honing enterprises are typical hazardous municipal materials that release benzene-series volatile organic compounds (VOC), which endanger human physical and mental health. Therefore, harmless treatment and resource reuse for these hazardous materials is urgent. In this study, the VOC emission, and pyrolysis and de-oiling behaviors of oily honing scrap was first characterized to evaluate the environmental risks. Smelting separation was then proposed to economically and eco-friendly recover valuable metals from the de-oiled ferroalloy scraps. The thermodynamics of Al2O3-SiO2 and CaO-Al2O3-SiO2 systems was calculated to optimize the slag formation. Results showed that after de-oiling and smelting with CaO addition, the hazardous VOC are removed, and the valuable metals are recovered in ferroalloy state. Under optimum conditions, a crude Fe-Mo-Cu alloy with Fe, Mo and Cu recoveries of 98.5 wt%, 97.9 wt%, and 98.4 wt% were obtained. In addition, the slag containing few toxic elements and VOC can be used for silicate cement production. Pyrolysis, de-oiling behaviors and mechanism for slagging and growth of Fe-Mo-Cu alloy during smelting were discussed via various testing techniques, and leaching toxicity of the cleaned slag was also characterized in this work. This process is also applicative to recover metals from various honing ferroalloy scraps.

10.
J Hazard Mater ; 403: 123640, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32818832

RESUMO

Micro-electrolysis is a cost-effective method widely applied in wastewater treatment. In this paper, a high-efficiency micro-electrolysis filler was prepared by a facile calcination method for the degradation of isobutyl xanthate (IBX). The optimization of filler fabrication process was investigated from aspects of compressive strength, abrasion loss and degradation rate. Combined with multi-characterization techniques, it can be found that the zero-valent iron (ZVI) was partially changed to Fe(2+) in the phase of fayalite (Fe2SiO4) during the treatment. The influence of operation parameters of filler dosage, initial pH and initial concentration were thoroughly studied. The result shows that the IBX degradation rate by optimized filler can reach 93.30%, superior to that of Fe/C filler (the element Fe kept at ZVI during heat treatment) with 61.8% removal. The degradation pathway of IBX was studied by GC-MS in details and the bis(2-methylpropyl)carbonate was postulated as the main by-product. The stability of filler was evaluated by batch cycle tests and column tests. This work provides a novel perspective about micro-electrolysis filler preparation. The extraordinary performance brings it potential for industrial application.

11.
Chemosphere ; 263: 128363, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297278

RESUMO

Hazardous metal pollution became a severe environmental issue in China. An efficient precipitation-flotation process was developed to achieve fast removal for metal-ions from wastewater. Structure and strength of precipitate particles/flocs significantly influence the flotation removal of metal-ions. Formation and growth-evolution of precipitate flocs in precipitate flotation were studied by stage analysis of precipitate particles-formation, flocs-regulation and flotation separation. The results demonstrate that early formed precipitates MHA(humics-metal complexing particles) have small particle size, high fractal dimension, low strength and recovery factor. The addition of Fe3+ and CTAB(cetyl trimethyl ammonium bromide) reagents make the precipitate particles aggregated to flocs(MHA-Fe, MHA-Fe-CTAB) much more large, loose, coarse, and small-density. The final generated MHA-Fe-CTAB flocs are hard to be broken up, easy to be recovered and efficient to be separated by flotation process. The flotation removal of MHA-Fe-CTAB flocs is clearly higher than that of MHA or MHA-Fe. The flotation results of MHA-Fe-CTAB are as follows: flotation removal of 98.7 ± 0.40%-99.9 ± 0.10%, residual TOC of 0.96 ± 0.38-1.35 ± 0.41 mg/L and turbidity of 0.44 ± 0.09-0.63 ± 0.16 NTU. Introducing Fe3+ and CTAB reagents into flotation solution contributes to the growth-evolution of precipitate flocs, which could intensify the metal-ions removal via precipitate flotation process and result in more ideal purification indexes for metal-containing wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Cetrimônio , China , Indicadores e Reagentes , Íons
12.
Nanomaterials (Basel) ; 10(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872472

RESUMO

The growing demand for high performance from supercapacitors has inspired the development of porous nanocomposites using renewable and naturally available materials. In this work, a formaldehyde-free phenolic resin using monosaccharide-based furfural was synthesized to act as the carbon precursor. One dimensional halloysite nanotube (HNT) with high porosity and excellent cation/anion exchange capacity was mixed with the phenol-furfural resin to fabricate carbonaceous nanocomposite HNT/C. Their structure and porosity were characterized. The effects of the halloysite nanotube amount and carbonization temperature on the electrochemical properties of HNT/C were explored. HNT/C exhibited rich porosity, involving a large specific surface area 253 m2·g-1 with a total pore volume of 0.27 cm3·g-1. The electrochemical performance of HNT/C was characterized in the three-electrode system and showed enhanced specific capacitance of 146 F·g-1 at 0.2 A g-1 (68 F·g-1 for pristine carbon) in electrolyte (6 mol·L-1 KOH) and a good rate capability of 62% at 3 A g-1. It also displayed excellent cycle performance with capacitance retention of 98.5% after 500 cycles. The symmetric supercapacitors with HNT/C-1:1.5-800 electrodes were fabricated, exhibiting a high energy density of 20.28 Wh·Kg-1 at a power density of 100 W·Kg-1 in 1 M Na2SO4 electrolyte. The present work provides a feasible method for preparing composite electrode materials with a porous structure from renewable phenol-furfural resin and HNT. The excellent supercapacitance highlights the potential applications of HNT/C in energy storage.

13.
J Hazard Mater ; 389: 122090, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972524

RESUMO

A new route for selective recovery of zinc from hazardous zinc plant purification residue was proposed by alkaline leaching process. The thermodynamic analysis revealed that by controlling solution pH in the range from 14.30 to 16.78 at 25 °C, basic zinc sulfate can be converted to ZnO22- instead of Zn(OH)2, while Cd will enter into alkaline leaching residue as a hydroxide. It is feasible to leach selectively Zn and to separate it with Cd by alkaline leaching, and the experimental results confirm that. Under the conditions of NaOH concentration of 3 mol/L, L/S of 20 ml/g, temperature of 40 °C, and time of 50 min, LR of Zn reached 96.14% while them of Pb and Cd were only 0.66% and 2.83% respectively. ZnO with hexagonal wurtzite structure and Cd(OH)2 were the main phases of leaching residue. They crystallized and adhered to the surface of leaching residue particles, which result in the loose and random particle morphology. The findings confirm that alkaline leaching is efficient in separation of Zn and Cd in ZPPR. In addition, nano-ZnO with flowerlike was synthesized with the zinc-rich leaching solution by precipitation method and the its photocatalytic property was similar to that of nano-ZnO purchased.

14.
J Hazard Mater ; 371: 592-602, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878910

RESUMO

Toxic metal pollutants threaten water environment. It exists undesirably metal-ion concentration limits with conventional precipitation flotation. An enhanced precipitation flotation system focusing on efficient removal for bivalent metal-ions was researched. The system involved the addition of humics and Fe3+ to generate and regulate the precipitates. The characteristics of precipitates were investigated by particle analysis, conditional stability constants and DLVO theory calculations, and SEM&TEM imaging. The results reveal that metal-ions chelate with humics at low metal-ion concentration, with generating the limited micro-size precipitates of <2.0 µm, fractal dimension of 1.60-1.80 and precipitate efficiency of <91.00%. By adding trivalent Fe3+, the macro-size precipitates are obtained with particle size of approximate 10.0 µm, fractal dimension of 1.50-1.60, and nearly-total flotation removal of precipitate. The chelating interaction of Fe3+ with humics is the mainly regulating mechanism, which could enhance the conditional stability constants and the precipitate efficiency of metal-ions at low concentration. The desired precipitate particles are finally obtained by breaking the limitations of metal-ion concentration. Finally, the flotation removal of metal-ions from single or mixed solutions is respectively 99.10 ± 0.10% for Cu2+, 99.60 ± 0.10% for Pb2+, and 94.30 ± 0.30% for Zn2+. Therefore, the enhanced precipitation flotation process is an efficient purification approach for metal-containing wastewaters.

15.
J Hazard Mater ; 307: 318-27, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26799223

RESUMO

The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation.

16.
J Hazard Mater ; 301: 46-55, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342150

RESUMO

Humics flocculant was applied in the disposal of Bayer red mud based on selective flocculation desliming process. The parameters affecting selective flocculation behavior such as flocculant dosage, slurry pH and agitation intensity were studied. For flocculating mechanism analysis, the iron mineral and the flocs product were characterized by ζ-potential testing, settling experiments, optical microscope and SEM imaging. The results show that humics exhibits a good selective flocculation performance in the high alkaline pH range. With an optimal condition of 2% solid density, flocculant dosage 30 mg L(-1), Na2SiO3 dosage 200 mg L(-1), slurry pH 10.0 and agitation speed 1000 rpm, the recovery of iron minerals of 86.25±1.31%, the iron grade of concentrate of 61.12±0.10%, the separation index of 0.69±0.02 can be obtained in the selective flocculation. It is found that the adsorption bridging of humics polymer dominates the selectively flocculating the iron minerals. Large flocs or aggregates with a better settling capacity are generated because of humics occurring. The maximum settling velocity of 38.23±1.51 m h(-1) is reached at pH 10. This work brings the easiness in directly recovering fine particle size of iron-bearing minerals from red mud.

17.
Environ Monit Assess ; 184(8): 5105-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21922179

RESUMO

Aiming at the remote sensing application has been increasingly relying on ground object spectral characteristics. In order to further research the spectral reflectance characteristics in arid area, this study was performed in the typical delta oasis of Weigan and Kuqa rivers located north of Tarim Basin. Data were collected from geo-targets at multiple sites in various field conditions. The spectra data were collected for different soil types including saline-alkaline soil, silt sandy soil, cotton field, and others; vegetations of Alhagi sparsifolia, Phragmites australis, Tamarix, Halostachys caspica, etc., and water bodies. Next, the data were processed to remove high-frequency noise, and the spectral curves were smoothed with the moving average method. The derivative spectrum was generated after eliminating environmental background noise so that to distinguish the original overlap spectra. After continuum removal of the undesirable absorbance, the spectrum curves were able to highlight features for both optical absorbance and reflectance. The spectrum information of each ground object is essential for fully utilizing the multispectrum data generated by remote sensing, which will need a representative spectral library. In this study using ENVI 4.5 software, a preliminary spectral library of surface features was constructed using the data surveyed in the study area. This library can support remote sensing activities such as feature investigation, vegetation classification, and environmental monitoring in the delta oasis region. Future plan will focus on sharing and standardizing the criteria of professional spectral library and to expand and promote the utilization of the spectral databases.


Assuntos
Meio Ambiente , Monitoramento Ambiental/métodos , Rios , Solo/química , China , Clima Desértico , Salinidade
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(11): 2956-61, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23387157

RESUMO

Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible.


Assuntos
Sais/análise , Cloreto de Sódio/análise , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Conservação dos Recursos Naturais , Modelos Teóricos , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...